Supplementary Table 1: Pairwise ILD P-values

Partition	Coding	pos1	pos2	pos3	pos1&2	Cons non-coding
Coding						< 0.001
Coding pos1		/	0.323	<0.001		0.460
Coding pos2		0.648		0.983		0.324
Coding pos3		0.569	0.960			< 0.001
Coding pos1&2		·				0.432
Cons non-coding	0.328	0.361	0.696	0.951	0.163	

Supplementary Table 1: Pairwise incongruence length difference P-values between different data partitions. Values above the diagnal are for nucleotide-coded data, and below the diagonal are for RY-coded data. All ILD tests were performed using PAUP* and 1000 replicates of 10 random addition TBR swapped maximum parsimony trees.

Supplementary Table 2: Gapped ILD-tests

Coding sequence, nucleotide-coded

5 ,					
<= 2 gaps, >2 gaps	0.591				
<= 3 gaps, >3 gaps	0.273				
Coding sequence, RY-coded					
<= 2 gaps, >2 gaps	0.664				
<= 3 gaps, >3 gaps	0.698				
Conserved non-coding, nucleotide-coded					
<= 3 gaps, >3 gaps	0.050				
Conserved non-coding, RY-coded					
<= 3 gaps, >3 gaps	0.627				

Supplementary Table 2: ILD test results comparing positions with more gaps to those with few or no gaps. All ILD tests were performed using PAUP* and 1000 replicates of 10 random addition TBR swapped maximum parsimony trees.